Corrosion and Wear Properties of Building Direction Dependent as-Built AlSi10Mg Aluminium Alloy Printed by Selective Laser Melting
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
In this study, poly(methyl methacrylate) (PMMA) nanofiber scaffolds reinforced with synthesized nano-hydroxyapatite (n-HA) were fabricated through electrospinning to enhance their potential for applications in bone tissue engineering. Sodium tripolyphosphate (STTP) was utilized as a surfactant to achieve a uniform distribution of particles and improve the structural integrity of the scaffolds. PMMA solutions were prepared at concentrations of the addition of STTP effectively stabilized n-HA dispersion, leading to enhanced fiber morphology, as confirmed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The PMMA_10_HA_S nanofibers demonstrated a homogeneous fiber distribution with an average diameter of 345.40 ± 53.55 nm and a calcium content of 7.1%. Mechanical testing revealed that adding STTP enhanced the mechanical properties, with the n-HA-reinforced 10 wt.% PMMA nanofibers achieving a maximum tensile stress of 4.16 ± 2.13 MPa and an elongation of 7.1 ± 1.95%. Furthermore, cell cytotoxicity assays of different concentrations (25, 50, 75, and 100 mg/mL) using L929 fibroblast cells demonstrated no cytotoxic effect of PMMA_10_HA_S nanofibers. These findings, reinforced by STTP and n-HA, highlight the potential of PMMA_10_HA_S nanofiber scaffolds as promising candidates for bone tissue applications










