A Program-Output Estimator for Software Testing Using Program Analysis and Deep Learning Algorithms

dc.contributor.authorArasteh, Bahman
dc.contributor.authorSefati, Seyed Salar
dc.contributor.authorGüneş, Peri
dc.contributor.authorHosseinzadeh, Vahid
dc.contributor.authorKiani, Farzad
dc.date.accessioned2025-11-27T13:59:09Z
dc.date.available2025-11-27T13:59:09Z
dc.date.issued2025en_US
dc.departmentFSM Vakıf Üniversitesien_US
dc.description.abstractSoftware testing is increasingly used as a software quality control method. During testing, the program under test’s output is compared with the expected correct output using test data. Estimating the program’s correct output from test inputs is a research problem in software testing. A test predictor (oracle) is a mechanism for determining the correctness of software outputs during testing. Many statistical and data mining techniques have been utilized to design a software test oracle. This study uses a Deep Learning (DL) technique to design a software test oracle. The proposed approach uses Convolutional Neural Networks (CNNs) to build the model for predicting results. Creating a training dataset derived from the behavior of real-world programs is another contribution of this study. Converting the created dataset to image files and normalizing them is the other stage of this study. The experimental results for programs with numeric and classification outputs indicate that the introduced test oracle achieves approximately 98% accuracy and 97% sensitivity. Moreover, the proposed method demonstrates higher accuracy, precision, and sensitivity than previous methods.en_US
dc.identifier.citationARASTEH, Bahman, Seyed Salar SEFATI, Peri GÜNEŞ, Vahid HOSSEINZADEH & Farzad KIANI. "A Program-Output Estimator for Software Testing Using Program Analysis and Deep Learning Algorithms". Journal of Electronic Testing, (2025): 1-17.en_US
dc.identifier.doi10.1007/s10836-025-06209-y
dc.identifier.endpage17en_US
dc.identifier.issn0923-8174
dc.identifier.issn1573-0727
dc.identifier.orcidhttps://orcid.org/0000-0001-5202-6315en_US
dc.identifier.scopus2-s2.0-105021501725
dc.identifier.scopusqualityQ3
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11352/5741
dc.identifier.wosWOS:001613168800001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKiani, Farzad
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Electronic Testing
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectSoftware Testen_US
dc.subjectTest Predictoren_US
dc.subjectDeep Learningen_US
dc.subjectConvolutional Neural Networksen_US
dc.subjectAccuracyen_US
dc.subjectSensitivityen_US
dc.titleA Program-Output Estimator for Software Testing Using Program Analysis and Deep Learning Algorithmsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Arasteh (3).pdf
Boyut:
2.9 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: