Machine Learning Regression for Assessing Sensing Performance and Anticancer Potential of Oolong Tea-Derived Silver Nanoparticles

dc.contributor.authorSert, Esra
dc.contributor.authorKalındemirtaş, Ferdane Danışman
dc.contributor.authorKarakuş, Emir Ersel
dc.contributor.authorErol, Ayşe
dc.contributor.authorÖzbaş, Fatih
dc.contributor.authorKüçükdeniz, Tarık
dc.contributor.authorKarakuş, Selcan
dc.date.accessioned2025-03-12T09:03:28Z
dc.date.available2025-03-12T09:03:28Z
dc.date.issued2025en_US
dc.departmentFSM Vakıf Üniversitesi, Vakıf Kültür Varlıklarını Koruma Uygulama ve Araştırma Merkezi (KURAM)en_US
dc.description.abstractIn this study, machine learning (ML) algorithms were employed to predict analyte concentrations using sensing results and evaluate the anticancer effects of nanostructures. Multifunctional oolong tea extract-mediated silver nanoparticles (OTE-Ag NPs) were synthesized via a photo/ultrasound method and utilized in various applications, including a smartphone-based H2O2 sensor and electrochemical sensors for urea and fructose. Key features were extracted from electrochemical results, and feature importance analysis was used to select the most predictive features. The artificial neural network (ANN) model provided accurate predictions, particularly strong for urea (R2 = 0.8575, RMSE = 0.4266, MAE = 0.3380). The study revealed the selective toxicity of OTE-Ag NPs to MCF-7 breast cancer cells through analyses of cytotoxicity, apoptosis, cell cycle phases, and CD44 surface marker expression using Annexin V/PI dye and flow cytometry. Experimental results demonstrated that OTE-Ag NPs suppressed MCF-7 cell proliferation while exhibiting lower cytotoxicity in normal HUVEC cells (46% cell death). OTE-Ag NPs arrested MCF-7 cells in the G2/M phase, induced apoptosis, and reduced CD44 expression, suggesting metastasis suppression. The CD44+/CD24- ratio decreased from 84.79% in control MCF-7 cells to 47.7% in OTE-Ag NP-treated cells. Overall, OTE-Ag NPs significantly inhibited MCF-7 cell proliferation through the apoptotic pathway by regulating the cell cycle in the G2/M phase.en_US
dc.identifier.citationSERT, Esra, Ferdane Danışman KALINDEMİRTAŞ, Emir Ersel KARAKUŞ, Ayşe EROL, Fatih ÖZBAŞ, Tarık KÜÇÜKDENİZ & Selcan KARAKUŞ. "Machine Learning Regression for Assessing Sensing Performance and Anticancer Potential of Oolong Tea-Derived Silver Nanoparticles". Journal of The Electrochemical Society, 172.3 (2024): 1-12.en_US
dc.identifier.doi10.1149/1945-7111/adb90f
dc.identifier.endpage12en_US
dc.identifier.issn0013-4651
dc.identifier.issn1945-7111
dc.identifier.issue3en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6655-9363en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8368-4609en_US
dc.identifier.scopus2-s2.0-86000172197
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11352/5195
dc.identifier.volume172en_US
dc.identifier.wosWOS:001436890300001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorÖzbaş, Fatih
dc.language.isoen
dc.publisherThe Electrochemical Society (ECS)en_US
dc.relation.ispartofJournal of The Electrochemical Society
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.titleMachine Learning Regression for Assessing Sensing Performance and Anticancer Potential of Oolong Tea-Derived Silver Nanoparticlesen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Sert.pdf
Boyut:
1.16 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: