Advanced Machine Learning Techniques for Predicting Wear Performance in Graphene Oxide Particulate Interpenetrating Polymer Network Composites

dc.contributor.authorRussel, Eastus
dc.contributor.authorMadhu, S.
dc.contributor.authorS., Judy
dc.contributor.authorVaruvel, Edwin Geo
dc.contributor.authorSanthi, G.B.
dc.contributor.authorSuresh, G.
dc.contributor.authorJ.S, Femilda Josephin
dc.contributor.authorAlbeshr, Mohammed F.
dc.contributor.authorKiani, Farzad
dc.date.accessioned2025-11-10T14:43:45Z
dc.date.available2025-11-10T14:43:45Z
dc.date.issued2025en_US
dc.departmentFSM Vakıf Üniversitesien_US
dc.description.abstractThis research investigates the wear behavior of hybrid polymeric composites made from synthetic glass and natural cotton fibers, reinforced with varying proportions of Graphene Oxide (GO) (0 %, 1 %, 3 %, 5 %, 7 %, 9 %). The effect of fiber arrangement and Graphene Oxide (GO) incorporation on wear rate and Coefficient of Friction (CoF) was evaluated using the Pin-On-Disk method, with analysis based on Taguchi's L32 Orthogonal Array. The optimal parameters were found at 6 min, 5 % GO, 300 revolutions per minute (rpm) speed, 20 mm (mm) track diameter, and 10 N (N) load, achieving a minimum wear rate of 0.612 × 10−4 cubic millimeters per newton-meter (mm3/N-m) and a CoF of 0.151. Predictive modeling was performed to predict the wear rate and coefficient of friction using supervised machine learning algorithms, including Linear Regression, Decision Tree, and Random Forest, to forecast material behavior. Performance evaluation using Confusion Matrix, Distribution Analysis, and various metrics showed that the Decision Tree model excelled, achieving near-perfect predictive power with a Mean Squared Error (MSE) of 0 and an R-squared value of 0.9999. The model demonstrated 100 % accuracy, with precision, recall, and F1-scores all equal to 1. This research demonstrates the effectiveness of combining natural and synthetic fibers with GO, along with the predictive power of machine learning in optimizing material properties.en_US
dc.identifier.citationRUSSEL, Eastus, S. MADHU, Judy S., Edwin Geo VARUVEL, G.B. SANTHI, G. SURESH, Femilda Josephin J.S., Mohammed F. ALBESHR & Farzad KIANI. “Advanced Machine Learning Techniques for Predicting Wear Performance in Graphene Oxide Particulate İnterpenetrating Polymer Network Composites”. Engineering Applications of Artificial Intelligence, 161 (2025): 118.en_US
dc.identifier.doi10.1016/j.engappai.2025.112252
dc.identifier.endpage18en_US
dc.identifier.issn0952-1976
dc.identifier.issn1873-6769
dc.identifier.issue161en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7303-3984en_US
dc.identifier.scopus2-s2.0-105016097493
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11352/5667
dc.identifier.wosWOS:001576087700001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKiani, Farzad
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.ispartofEngineering Applications of Artificial Intelligence
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectWear Rateen_US
dc.subjectCoefficient Of Frictionen_US
dc.subjectLinear Regressionen_US
dc.subjectDecision Treeen_US
dc.subjectRandom Forest Algorithmen_US
dc.titleAdvanced Machine Learning Techniques for Predicting Wear Performance in Graphene Oxide Particulate Interpenetrating Polymer Network Compositesen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Russel.pdf
Boyut:
17.03 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: