Unified Deep Learning Method for Accurate Brain Tumor Segmentation Using Vertical Voxel Grouping andWavelet Features
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Brain tumor segmentation plays a vital role in medical imaging, enabling accurate diagnosis and guiding treatment decisions. Despite notable progress driven by deep neural networks (DNNs) and multi-parametricmagnetic resonance imaging (mpMRI), the complexity and heterogeneity of tumor tissues make precise segmentation a persistent challenge. In this paper, we propose a novel method that integrates Vertically grouped Voxel Feature Extraction (VFE), wavelet-based multi-resolution detail enhancement, and amodified UNet-VGG16+architecture. TheVFEcomponent enhances tumor region contrast and suppresses irrelevant background areas by grouping column-wise voxel intensities within each slice. As a result, the average image contrast is increased by 23.78%, thereby improving the ability of Deep Neural Networks (DNNs) to focus on tumor regions. The wavelet-based enhancement captures multi-resolution details to more clearly delineate tumor boundaries while also reducing noise. The UNet-VGG16+ architecture leverages transfer learning to efficiently process these enhanced features for accurate segmentation. Extensive experiments on the BraTS21 dataset demonstrate that the proposed method achieves a mean Dice score of 94.69%, with segmentation accuracies of 93.3%, 93.1%, and 94.4% for Enhancing Tumor (ET),Whole Tumor (WT), and Tumor Core (TC), respectively. Comparative evaluations showconsistent and statistically significant improvements over state-of-the-art models (p < 0.001). Further validation on the BraTS18 dataset confirms the model’s generalizability. These results highlight the effectiveness of combining spatially structured voxel aggregation with frequency-domain analysis for robust and high-precision brain tumor segmentation.










