Metaheuristics Role in Image Processing and Computer Vision Applications: A Comprehensive Review

dc.contributor.authorŞahin, M. Faruk
dc.contributor.authorAnka, Ferzat
dc.date.accessioned2025-10-01T07:12:32Z
dc.date.available2025-10-01T07:12:32Z
dc.date.issued2025en_US
dc.departmentFSM Vakıf Üniversitesien_US
dc.description.abstractMeta-Heuristic (MH) algorithms have gained prominence in computer vision and image processing due to their efficacy in solving complicated, high-dimensional optimization challenges. This review study thoroughly evaluates the effectiveness of MH approaches in classification, segmentation, and registration applications. The compilation consists of 84 studies: 39 in classification (47%), 23 in segmentation (27%), and 22 in registration (26%). The examination of these investigations reveals that the implementation of MH algorithms in hybrid models utilizing deep learning offers notable benefits in enhancing accuracy, circumventing local optima, and decreasing computational expenses. This research also examines limitations, including the substantial computing demands in real-time applications and the challenges related to data processing. The paper highlights the significant potential of MH algorithms in healthcare, agriculture, security, and remote sensing, along with their role in addressing current challenges. Renowned international publishers, such as Elsevier, Springer, IEEE, and MDPI, have disseminated relevant contemporary research. The acceptance percentages for these publications are 42%, 24%, 12%, and 11%, respectively. Publications from alternative publishers account for the remaining 11%. Also, the source codes and associated datasets of the 84 studies examined in this paper are available as open source at this link: https://github.com/mfaruk-sahin/Metaheuristics-in-Image-Processing-and-Computer-Visionen_US
dc.identifier.citationŞAHİN, M. Faruk & Ferzat ANKA. " Metaheuristics Role in Image Processing and Computer Vision Applications: A Comprehensive Review". Cluster Computing, 28.871 (2025): 1-32.en_US
dc.identifier.doi10.1007/s10586-025-05610-8
dc.identifier.endpage32en_US
dc.identifier.issn1386-7857
dc.identifier.issn1573-7543
dc.identifier.issue871en_US
dc.identifier.orcidhttps://orcid.org/0009-0007-8901-6410en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0354-9344en_US
dc.identifier.scopus2-s2.0-105016793121
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://link.springer.com/article/10.1007/s10586-025-05610-8
dc.identifier.urihttps://hdl.handle.net/11352/5589
dc.identifier.volume28en_US
dc.identifier.wosWOS:001577806000010
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorŞahin, M. Faruk
dc.institutionauthorAnka, Ferzat
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofCluster Computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMeta-Heuristicsen_US
dc.subjectImage Processingen_US
dc.subjectComputer Visionen_US
dc.subjectArtificial Intelligenceen_US
dc.titleMetaheuristics Role in Image Processing and Computer Vision Applications: A Comprehensive Reviewen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Şahin.pdf
Boyut:
2.83 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: