• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Adaptive Feature Extraction Method for Classification of Covid-19 X-Ray Images

Thumbnail

Göster/Aç

Ana Makale (687.7Kb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2022

Yazar

Gündoğar, Zeynep
Eren, Furkan

Üst veri

Tüm öğe kaydını göster

Künye

GÜNDOĞAR, Zeynep & Furkan EREN. "An Adaptive Feature Extraction Method for Classification of Covid-19 X-Ray İmages", Signal, Image and Video Processing, (2022).

Özet

This study aims to detect Covid-19 disease in the fastest and most accurate way from X-ray images by developing a new feature extraction method and deep learning model . Partitioned Tridiagonal Enhanced Multivariance Products Representation (PTMEMPR) method is proposed as a new feature extraction method by using matrix partition in TMEMPR method which is known as matrix decomposition method in the literature. The proposed method which provides 99.9% data reduction is used as a preprocessing method in the scheme of the Covid-19 diagnosis. To evaluate the performance of the proposed method, it is compared with the state-of-the-art feature extraction methods which are Singular Value Decomposition(SVD), Discrete Wavelet Transform(DWT) and Discrete Cosine Transform(DCT). Also new deep learning models which are called FSMCov, FSMCov-N and FSMCov-L are developed in this study. The experimental results indicate that the combination of newly proposed feature extraction method and deep learning models yield an overall accuracy 99.8%.

Kaynak

Signal, Image and Video Processing

Bağlantı

https://hdl.handle.net/11352/4078

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [198]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.