Basit öğe kaydını göster

dc.contributor.authorAllahviranloo, T.
dc.contributor.authorJafarian, A.
dc.contributor.authorSaneifard, R.
dc.contributor.authorGhalami, N.
dc.contributor.authorNia, S. Measoomy
dc.contributor.authorKiani, F.
dc.contributor.authorGamiz, U. Fernandez
dc.contributor.authorNoeiaghdam, S.
dc.date.accessioned2023-07-28T14:07:46Z
dc.date.available2023-07-28T14:07:46Z
dc.date.issued2023en_US
dc.identifier.citationALLAHVİRANLOO , T., A. JAFARİAN , R. SANEİFARD , N. GHALAMİ , S. MEASOOMY NİA, F. KİANİ , U. FERNANDEZ-GAMİZ & S. NOEİAGHDAM. "An Application of Artificial Neural Networks for Solving Fractional Higher-order Linear Integro-differential Equations." Boundary Value Problems, 74 (2023): 2-14.en_US
dc.identifier.urihttps://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-023-01762-x
dc.identifier.urihttps://hdl.handle.net/11352/4626
dc.description.abstractThis ongoing work is vehemently dedicated to the investigation of a class of ordinary linear Volterra type integro-differential equations with fractional order in numerical mode. By replacing the unknown function by an appropriate multilayered feed-forward type neural structure, the fractional problem of such initial value is changed into a course of non-linear minimization equations, to some extent. Put differently, interest was sparked in structuring an optimized iterative first-order algorithm to estimate solutions for the origin fractional problem. On top of that, some computer simulation models exemplify the preciseness and well-functioning of the indicated iterative technique. The outstanding accomplished numerical outcomes conveniently reflect the productivity and competency of artificial neural network methods compared to customary approaches.en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionof10.1186/s13661-023-01762-xen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHigher-order Linear Integro-differential Equationen_US
dc.subjectArtificial Neural Network Approachen_US
dc.subjectCaputo Fractional Derivativeen_US
dc.subjectLearning Algorithmen_US
dc.subjectCost Functionen_US
dc.titleAn Application of Artificial Neural Networks for Solving Fractional Higher-order Linear Integro-differential Equationsen_US
dc.typearticleen_US
dc.relation.journalBoundary Value Problemsen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.issue74en_US
dc.identifier.startpage2en_US
dc.identifier.endpage14en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorKiani, F.


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster